Summary for : (29) Amphitrite

DynT.TT.BT T.L B T.DDensity (g/cm^3)Δρ/ρDiameter (km)ΔD/DMass (kg)ΔM/MRefAvg.M
MBASSS | LS2.48 ± 0.60   (C)24 %217.2 ± 11.25.2 %1.33e+19 ± 2.50e+1819 %SEVM
MBASSS | LS2.69 ± 0.46   (A)17 %212.1 ± 6.12.9 %1.34e+19 ± 2.00e+1815 %Sw.avg
MBAS2.38 ± 0.51   (C)21 %217.6 ± 10.74.9 %1.29e+19 ± 2.00e+1816 %C?

Average asteroid densities (g/cm^3):
C = 1.3 ± 0.6, B = 2.4 ± 0.5, S = 2.7 ± 0.5, M = 3.5 ± 1.0, P = 2.8 ± 1.6, X = 1.9 ± 0.8, Xc = 4.9 ± 0.9, Xk = 4.2 ± 0.7 (Ref)

Object is a Gaia target for mass determination !

Additional resources:
3D Model | JPL New Horizons | Minor Planet Center | Wikipedia (these auto-generated links might not work)

Note: The density estimates have been ranked from (A) to (E), corresponding to the relative error: (B) less than 20%, (C) between 20 and 50%, (D) between 50 and 100%, and (E) more than 100%. (A) stands for (presumably) reliable estimates (accuracy better than 20%), based on more than 5 mass estimates and 5 diameter estimates, or a spacecraft encounter. Apparently unrealistic densities (ρ > 8) are tagged with (X).

EVM: average by using the Expected Value Method (Ref). w.avg: weighted average (with w = 1/err^2).

T.T: Tholen Tax Class. T.B: Bus & Binzel Tax Class. T T.L: S3OS2 Lazarro (Tholen) Tax Class. T.L B: S3OS2 Lazarro (Bus & Binzel) Tax Class. T.D: DeMeo Tax Class.

Ref: S = SiMDA, C = Carry (2012)


Diameter estimates

DesignationDiameter / Err (km)ΔD/DMethodYearRefNχ2Use
(29) Amphitrite212.22 ± 6.803.2 % STM2004D93 0.54 1
(29) Amphitrite231.21 ± 6.552.8 % STM2010D64 4.58 2
(29) Amphitrite227.54 ± 7.573.3 % NEATM2010D64 1.87 3
(29) Amphitrite206.86 ± 2.591.3 % STM2011D83 15.93 4
(29) Amphitrite227.14 ± 3.971.7 % NEATM2011D72 6.27 5
(29) Amphitrite204.00 ± 3.001.5 % ADAM2017D100 19.35 6

plot, average diameter and derived density

All

Notes (N):
1: This estimate is discarded for the average diameter (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average diameter (and derived density) calculation in SiMDA (catalog).

ADAM : All-Data Asteroid Modeling. NEATM : Near-Earth Asteroid Thermal Model. STM : Standard Thermal Model.



EVM diam. average D = (217.2 ± 11.22) km   (ΔD/D = 5%, SNR = 19.37) Derived bulk density ρ = (2.48 ± 0.60) g/cm3   (Δρ/ρ = 24%, SNR = 4.1)



References
D64(2010):Ryan, E.L., Woodward, C.E., 2010. Rectified Asteroid Albedos and Diameters from IRAS and MSX Photometry Catalogs. Astronomical Journal 140, 933–943.
D72(2011):Masiero, J.R., Mainzer, A.K., Grav, T., Bauer, J.M., Cutri, R.M., Dailey, J., Eisenhardt, P.R.M., McMillan, R.S., Spahr, T.B., Skrutskie, M.F., Tholen, D., Walker, R.G., Wright, E.L., DeBaun, E., Elsbury, D., Gautier, IV, T., Gomillion, S., Wilkins, A., 2011. Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters. Astrophysical Journal 741, 68.
D83(2011):Usui, F., Kuroda, D., Müller, T.G., Hasegawa, S., Ishiguro, M., Ootsubo, T., Ishihara, D., Kataza, H., Takita, S., Oyabu, S., Ueno, M., Matsuhara, H., Onaka, T., 2011. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publications of the Astronomical Society of Japan 63, 1117–1138.
D93(2004):Tedesco, E.F., Noah, P.V., Noah, M.C., Price, S.D., 2004. IRAS Minor Planet Survey. NASA Planetary Data System. IRAS-A-FPA-3-RDR-IMPS-V6.0.
D100(2017):Hanuš, J., Viikinkoski, M., Marchis, F., et al., 2017. Volumes and bulk densities of forty asteroids from ADAM shape modeling. Astronomy and Astrophysics 601, A114 (2017). DOI: 10.1051/0004-6361/201629956


Mass estimates

DesignationMass / Err (kg)ΔM/MMethodYearRefNχ2Use
(29) Amphitrite1.53e+19 (+2.39e+18 / -2.39e+18)16 % / 16 %Deflec 2002M310.70 1
(29) Amphitrite1.53e+19 (+2.59e+18 / -2.59e+18)17 % / 17 %Deflec 2004M420.59 2
(29) Amphitrite1.17e+19 (+1.19e+18 / -1.19e+18)10 % / 10 %Deflec 2005M1191.82 3
(29) Amphitrite1.18e+19 (+5.97e+17 / -5.97e+17)5 % / 5 %Deflec 2008M726.37 4
(29) Amphitrite9.77e+18 (+1.79e+18 / -1.79e+18)18 % / 18 %Ephem 2009M803.90 5
(29) Amphitrite1.36e+19 (+1.36e+18 / -1.36e+18)10 % / 10 %Ephem 2009M860.05 6
(29) Amphitrite1.18e+19 (+6.03e+18 / -6.03e+18)51 % / 51 %Deflec 2010M920.06 7
(29) Amphitrite1.52e+19 (+6.17e+17 / -6.17e+17)4 % / 4 %Deflec 2011M959.42 8
(29) Amphitrite1.48e+19 (+2.96e+18 / -2.96e+18)20 % / 20 %Ephem 2011M1030.25 9
(29) Amphitrite1.20e+19 (+1.91e+18 / -1.91e+18)16 % / 16 %Deflec 2011M970.47 10
(29) Amphitrite1.06e+19 (+1.64e+18 / -1.64e+18)15 % / 15 %Deflec 2011M972.72 11
(29) Amphitrite1.10e+19 (+1.63e+18 / -1.63e+18)15 % / 15 %Deflec 2011M972.00 12
(29) Amphitrite9.77e+18 (+2.30e+18 / -2.30e+18)24 % / 24 %Deflec 2011M972.36 13
(29) Amphitrite1.47e+19 (+1.69e+18 / -1.69e+18)11 % / 11 %Ephem 2011M1000.68 14
(29) Amphitrite1.47e+19 (+9.94e+17 / -9.94e+17)7 % / 7 %Deflec 2013M1201.97 15
(29) Amphitrite1.33e+19 (+3.98e+17 / -3.98e+17)3 % / 3 %OrbFitN 2014M1230.00 16
(29) Amphitrite1.40e+19 (+7.06e+17 / -7.06e+17)5 % / 5 %Deflec 2017M12521.02 17
(29) Amphitrite1.30e+19 (+1.36e+18 / -1.36e+18)10 % / 10 %Deflec 2017M12520.04 18
(29) Amphitrite2.96e+19 (+3.82e+18 / -3.82e+18)13 % / 13 %Deflec 2017M125218.26 19
(29) Amphitrite1.79e+19 (+2.84e+18 / -2.84e+18)16 % / 16 %Deflec 2017M12522.59 20
(29) Amphitrite2.29e+19 (+3.84e+18 / -3.84e+18)17 % / 17 %Deflec 2017M12526.20 21
(29) Amphitrite2.88e+19 (+5.09e+18 / -5.09e+18)18 % / 18 %Deflec 2017M12529.30 22
(29) Amphitrite2.21e+19 (+6.44e+18 / -6.44e+18)29 % / 29 %Deflec 2017M12521.85 23
(29) Amphitrite6.00e+18 (+1.82e+18 / -1.82e+18)30 % / 30 %Deflec 2017M125216.09 24
(29) Amphitrite1.29e+19 (+4.85e+18 / -4.85e+18)38 % / 38 %Deflec 2017M12520.01 25
(29) Amphitrite8.81e+18 (+3.42e+18 / -3.42e+18)39 % / 39 %Deflec 2017M12521.73 26
(29) Amphitrite1.39e+19 (+5.51e+17 / -5.51e+17)4 % / 4 %Deflec 2017M12531.01 27
(29) Amphitrite5.13e+18 (+1.27e+19 / -4.81e+18)248 % / 94 %Defl-MC 2017M12720.87 28
(29) Amphitrite1.41e+19 (+1.26e+18 / -1.26e+18)9 % / 9 %Ephem 2019M1260.43 29
(29) Amphitrite1.08e+19 (+1.75e+19 / -1.06e+19)162 % / 98 %Defl-MC 2020M12820.03 30

plot, average mass and derived density

All

Notes (N):
1: This estimate is discarded for the average mass (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average mass (and derived density) calculation in SiMDA (catalog).
3: This estimate is an average of individual solutions listed before under the same reference (e.g. M125).
4: Values with asymmetric errors are currently just diplayed but disabled (unchecked) for the average calculation.

Defl-MC : Orbital deflection (close encounter) of one or several test asteroids (Markov Chain Monte Carlo, MCMC). Deflec : Orbital deflection (close encounter) of one or several test asteroids (classical LSQ). Ephem : Planetary ephemeris solution. OrbFitN : Simultaneous multi-asteroid astrometric orbit solution (similar to 'Ephem').



EVM mass average M = (1.331 ± 0.250) × 1019 kg   (ΔM/M = 19%, SNR = 5.3) Derived bulk density ρ = (2.48 ± 0.60) g/cm3   (Δρ/ρ = 24%, SNR = 4.1)



References
M31(2002):Chernetenko, Y.A., Kochetova, O.M., 2002. Masses of some large minor planets, in: B. Warmbein (Ed.), Asteroids, Comets, and Meteors: ACM 2002, pp. 437–440.
M42(2004):Kochetova, O.M., 2004. Determination of Large Asteroid Masses by the Dynamical Method. Solar System Research 38, 66–75.
M72(2008):Baer, J., Milani, A., Chesley, S.R., Matson, R.D., 2008. An Observational Error Model, and Application to Asteroid Mass Determination, in: Bulletin of the American Astronomical Society, p. 493.
M80(2009):Fienga, A., Laskar, J., Morley, T., Manche, H., Kuchynka, P., Le Poncin-Lafitte, C., Budnik, F., Gastineau, M., Somenzi, L., 2009. INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. Astronomy and Astrophysics 507, 1675–1686.
M86(2009):Folkner, W.M., Williams, J.G., Boggs, D.H., 2009. The planetary and lunar ephemeris de 421. IPN Progress Report 42, 1–34.
M92(2010):Somenzi, L., Fienga, A., Laskar, J., Kuchynka, P., 2010. Determination of asteroid masses from their close encounters with Mars. Planetary and Space Science 58, 858–863.
M95(2011):Baer, J., Chesley, S.R., Matson, R.D., 2011. Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. Astronomical Journal 141, 143–155.
M97(2011):Zielenbach, W., 2011. Mass Determination Studies of 104 Large Asteroids. Astronomical Journal 142, 120–128.
M100(2011):Fienga, A., Kuchynka, P., Laskar, J., Manche, H., Gastineau, M., 2011. Asteroid mass determinations with INPOP planetary ephemerides. EPSC-DPS Joint Meeting 2011 , 1879.
M103(2011):Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T., 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428.
M119(2005):Kretlow, M., 2005. https://astro.kretlow.de .
M120(2013):Kretlow, M., 2013. https://astro.kretlow.de .
M123(2014):Goffin, E., 2014. Astrometric asteroid masses: a simultaneous determination. Astronomy & Astrophysics, Volume 565, id.A56, 8 pp.
M125(2017):Baer, J., Chesley, S.R., 2017. Simultaneous Mass Determination for Gravitationally Coupled Asteroids. The Astronomical Journal, Volume 154, Issue 2, article id. 76, 11 pp.
M126(2019):Fienga, A., et. al, 2019. INPOP19a planetary ephemeris. Notes Scientifiques et Techniques de l'Institut de mécanique céleste,
M127(2017):Siltala, L., Granvik, M., 2017. Asteroid mass estimation using Markov-chain Monte Carlo. Icarus 297 (November 2017), 149-159. https://doi.org/10.1016/j.icarus.2017.06.028
M128(2020):Siltala, L., Granvik, M., 2020. Asteroid mass estimation with the robust adaptive Metropolis algorithm. Astronomy & Astrophysics, 633, A46.