References
D22 | (2005): | Thomas, P.C., Parker, J.W., McFadden, L.A., Russell, C.T., Stern, S.A., Sykes, M.V., Young, E.F., 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226. |
D41 | (2008): | Carry, B., Dumas, C., Fulchignoni, M., Merline, W.J., Berthier, J., Hestroffer, D., Fusco, T., Tamblyn, P., 2008. Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres. Astronomy and Astrophysics 478, 235–244. |
D48 | (2008): | Drummond, J.D., Christou, J.C., 2008. Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres. Icarus 197, 480–496. |
D64 | (2010): | Ryan, E.L., Woodward, C.E., 2010. Rectified Asteroid Albedos and Diameters from IRAS and MSX Photometry Catalogs. Astronomical Journal 140, 933–943. |
D83 | (2011): | Usui, F., Kuroda, D., Müller, T.G., Hasegawa, S., Ishiguro, M., Ootsubo, T., Ishihara, D., Kataza, H., Takita, S., Oyabu, S., Ueno, M., Matsuhara, H., Onaka, T., 2011. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publications of the Astronomical Society of Japan 63, 1117–1138. |
D93 | (2004): | Tedesco, E.F., Noah, P.V., Noah, M.C., Price, S.D., 2004. IRAS Minor Planet Survey. NASA Planetary Data System. IRAS-A-FPA-3-RDR-IMPS-V6.0. |
D107 | (2016): | Park, R., Konopliv, A., Bills, B. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016). https://doi.org/10.1038/nature18955 |
Mass estimates
Notes (N):
1: This estimate is discarded for the average mass (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average mass (and derived density) calculation in SiMDA (catalog).
3: This estimate is an average of individual solutions listed before under the same reference (e.g. M125).
Deflec : Orbital deflection (close encounter) of one or several test asteroids (classical LSQ). Ephem : Planetary ephemeris solution. FlyBy : Spacecraft radio experiment (ranging etc. from flyby, orbiter or lander). OrbFitN : Simultaneous multi-asteroid astrometric orbit solution (similar to 'Ephem').
|
EVM mass average M = (9.408 ± 0.076) × 1020 kg (ΔM/M = 1%, SNR = 124.2)
Derived bulk density ρ = (2.17 ± 0.11) g/cm3 (Δρ/ρ = 5%, SNR = 19.5)
|
References
M1 | (1992): | Williams, G.V., 1992. The mass of (1) Ceres from perturbations on (348) May, in: Asteroids, Comets, Meteors 1991, pp. 641–643 |
M2 | (1992): | Sitarski, G., Todorovic-Juchniewicz, B., 1992. Determination of the mass of (1) Ceres from perturbations on (203) Pompeja and (348) May. Acta Astronomica 42, 139–144. |
M5 | (1995): | Viateau, B., Rapaport, M., 1995. The orbit of (2) Pallas. Astronomy and Astrophysics 111, 305–+. |
M6 | (1995): | Sitarski, G., Todorovic-Juchniewicz, B., 1995. Determination of Masses of Ceres and Vesta from Their Perturbations on Four Asteroids. Acta Astronomica 45, 673–677. |
M7 | (1996): | Carpino, M., Knezevic, Z., 1996. Asteroid mass determination: (1) Ceres, in: S. Ferraz-Mello, B. Morando, & J.-E. Arlot (Ed.), Dynamics, Ephemerides, and Astrometry of the Solar System, pp. 203–+. |
M8 | (1996): | Kuzmanoski, M., 1996. A method for asteroid mass determination, in: S. Ferraz-Mello, B. Morando, & J.-E. Arlot (Ed.), Dynamics, Ephemerides, and Astrometry of the Solar System, pp. 207–+. |
M11 | (1997): | Viateau, B., Rapaport, M., 1997. Improvement of the Orbits of Asteroids and the Mass of (1) Ceres, in: R. M. Bonnet, E. Høg, P. L. Bernacca, L. Emiliani, A. Blaauw, C. Turon, J. Kovalevsky, L. Lindegren, H. Hassan, M. Bouffard, B. Strim, D. Heger, M. A. C. Perryman, & L. Woltjer (Ed.), Hipparcos - Venice '97, pp. 91–94. |
M15 | (1998): | Viateau, B., Rapaport, M., 1998. The mass of (1) Ceres from its gravitational perturbations on the orbits of 9 asteroids. Astronomy and Astrophysics 334, 729–735. |
M17 | (1999): | Hilton, J.L., 1999. US Naval Observatory Ephemerides of the Largest Asteroids. Astronomical Journal 117, 1077–1086. |
M21 | (2000): | Michalak, G., 2000. Determination of asteroid masses — I. (1) Ceres, (2) Pallas and (4) Vesta. Astronomy and Astrophysics 360, 363–374. |
M23 | (2001): | Goffin, E., 2001. New determination of the mass of Pallas. Astronomy and Astrophysics 365, 627–630. |
M25 | (2001): | Pitjeva, E.V., 2001. Progress in the determination of some astronomical constants from radiometric observations of planets and spacecraft. Astronomy and Astrophysics 371, 760–765. |
M29 | (2001): | Standish, E.M., 2001. Suggested GM values for Ceres, Pallas, and Vesta. Technical Report. JPL Interoffice Memorandum. |
M39 | (2004): | Pitjeva, E.V., 2004. Estimations of masses of the largest asteroids and the main asteroid belt from ranging to planets, Mars orbiters and landers, in: J.-P. Paillé (Ed.), 35th COSPAR Scientific Assembly, p. 2014. |
M49 | (2005): | Pitjeva, E.V., 2005. High-Precision Ephemerides of Planets - EPM and Determination of Some Astronomical Constants. Solar System Research 39, 176–186. |
M56 | (2006): | Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.N., Sjogren, W.L., 2006. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50. |
M63 | (2007): | Kovačević, A., Kuzmanoski, M., 2007. A New Determination of the Mass of (1) Ceres. Earth Moon and Planets 100, 117–123. |
M70 | (2008): | Fienga, A., Manche, H., Laskar, J., Gastineau, M., 2008. INPOP06: a new numerical planetary ephemeris. Astronomy and Astrophysics 477, 315–327. |
M72 | (2008): | Baer, J., Milani, A., Chesley, S.R., Matson, R.D., 2008. An Observational Error Model, and Application to Asteroid Mass Determination, in: Bulletin of the American Astronomical Society, p. 493. |
M86 | (2009): | Folkner, W.M., Williams, J.G., Boggs, D.H., 2009. The planetary and lunar ephemeris de 421. IPN Progress Report 42, 1–34. |
M93 | (2010): | Fienga, A., Manche, H., Kuchynka, P., Laskar, J., Gastineau, M., 2010. INPOP10a. Scientific Notes. |
M95 | (2011): | Baer, J., Chesley, S.R., Matson, R.D., 2011. Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. Astronomical Journal 141, 143–155. |
M103 | (2011): | Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T., 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428. |
M110 | (1971): | Schubart, J., 1971. The Planetary Masses and the Orbits of the First Four Minor Planets. In: The IAU System of Astronomical Constants, Proc. IAU Colloq. 9, Heidelberg, Germany, 12-14 August 1970; B. Emerson, T. Lederle (eds.), Celest. Mech. 4, 246-249 |
M111 | (1971): | Schubart, J., 1971. Asteroid Masses and Densities. In: Physical Studies of Minor Planets, Proc. IAU Colloq. 12, Tucson, AZ, USA, 6-10 March 1971; T. Gehrels (ed.), NASA Sp-267, p. 33-39 |
M112 | (1974): | Schubart, J., 1974. The Masses of the First Two Asteroids. Astronomy and Astrophysics 30, 289-292. |
M115 | (1988): | Landgraf, W., 1988. The mass of Ceres. Astronomy and Astrophysics (ISSN 0004-6361), vol. 191, no. 1, Feb. 1988, p. 161-166. |
M116 | (1989): | Standish, E. M., Hellings, R. W., 1989. A determination of the masses of Ceres, Pallas, and Vesta from their perturbations upon the orbit of Mars. Icarus, Volume 80, Issue 2, p. 326-333. |
M117 | (1991): | Goffin, E., 1991. The orbit of 203 Pompeja and the mass of Ceres. Astronomy and Astrophysics (ISSN 0004-6361), vol. 249, no. 2, Sept. 1991, p. 563-568. |
M123 | (2014): | Goffin, E., 2014. Astrometric asteroid masses: a simultaneous determination. Astronomy & Astrophysics, Volume 565, id.A56, 8 pp. |
M125 | (2017): | Baer, J., Chesley, S.R., 2017. Simultaneous Mass Determination for Gravitationally Coupled Asteroids. The Astronomical Journal, Volume 154, Issue 2, article id. 76, 11 pp. |
M126 | (2019): | Fienga, A., et. al, 2019. INPOP19a planetary ephemeris. Notes Scientifiques et Techniques de l'Institut de mécanique céleste, |
M132 | (2016): | Park, R., Konopliv, A., Bills, B. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016). https://doi.org/10.1038/nature18955 |
| |