Average asteroid densities (g/cm^3): C = 1.3 ± 0.6, B = 2.4 ± 0.5, S = 2.7 ± 0.5, M = 3.5 ± 1.0, P = 2.8 ± 1.6,
X = 1.9 ± 0.8, Xc = 4.9 ± 0.9, Xk = 4.2 ± 0.7 (Ref)
Object is a Gaia target for mass determination !
Additional resources:
3D Model |
JPL New Horizons |
Minor Planet Center |
Wikipedia (these auto-generated links might not work) Note:
The density estimates have been ranked from (A) to (E), corresponding to the relative error: (B) less than 20%,
(C) between 20 and 50%, (D) between 50 and 100%, and (E) more than 100%. (A) stands for (presumably) reliable estimates (accuracy better than 20%), based on more than 5 mass estimates and 5 diameter
estimates, or a spacecraft encounter. Apparently unrealistic densities (ρ > 8) are tagged with (X).
EVM: average by using the Expected Value Method (Ref). w.avg: weighted average (with w = 1/err^2).
T.T: Tholen Tax Class. T.B: Bus & Binzel Tax Class. T T.L: S3OS2 Lazarro (Tholen) Tax Class. T.L B: S3OS2 Lazarro (Bus & Binzel) Tax Class. T.D: DeMeo Tax Class. Ref: S = SiMDA, C = Carry (2012)
Diameter estimates
Notes (N): 1: This estimate is discarded for the average diameter (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average diameter (and derived density) calculation in SiMDA (catalog).
FlyBy : Images from spacecraft encounter. Img-TE : Triaxial ellipsoid model from images. NEATM : Near-Earth Asteroid Thermal Model. STM : Standard Thermal Model.
EVM diam. average D = (938.6 ± 15.84) km (ΔD/D = 2%, SNR = 59.24)
Derived bulk density ρ = (2.17 ± 0.11) g/cm3 (Δρ/ρ = 5%, SNR = 19.5)
References
D22
(2005):
Thomas, P.C., Parker, J.W., McFadden, L.A., Russell, C.T., Stern, S.A., Sykes, M.V., Young, E.F., 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226.
D41
(2008):
Carry, B., Dumas, C., Fulchignoni, M., Merline, W.J., Berthier, J., Hestroffer, D., Fusco, T., Tamblyn, P., 2008. Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres. Astronomy and Astrophysics 478, 235–244.
D48
(2008):
Drummond, J.D., Christou, J.C., 2008. Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres. Icarus 197, 480–496.
D64
(2010):
Ryan, E.L., Woodward, C.E., 2010. Rectified Asteroid Albedos and Diameters from IRAS and MSX Photometry Catalogs. Astronomical Journal 140, 933–943.
D83
(2011):
Usui, F., Kuroda, D., Müller, T.G., Hasegawa, S., Ishiguro, M., Ootsubo, T., Ishihara, D., Kataza, H., Takita, S., Oyabu, S., Ueno, M., Matsuhara, H., Onaka, T., 2011. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publications of the Astronomical Society of Japan 63, 1117–1138.
D93
(2004):
Tedesco, E.F., Noah, P.V., Noah, M.C., Price, S.D., 2004. IRAS Minor Planet Survey. NASA Planetary Data System. IRAS-A-FPA-3-RDR-IMPS-V6.0.
D107
(2016):
Park, R., Konopliv, A., Bills, B. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016). https://doi.org/10.1038/nature18955
Mass estimates
Notes (N): 1: This estimate is discarded for the average mass (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average mass (and derived density) calculation in SiMDA (catalog).
3: This estimate is an average of individual solutions listed before under the same reference (e.g. M125).
Deflec : Orbital deflection (close encounter) of one or several test asteroids (classical LSQ). Ephem : Planetary ephemeris solution. FlyBy : Spacecraft radio experiment (ranging etc. from flyby, orbiter or lander). OrbFitN : Simultaneous multi-asteroid astrometric orbit solution (similar to 'Ephem').
EVM mass average M = (9.408 ± 0.076) × 1020 kg (ΔM/M = 1%, SNR = 124.2)
Derived bulk density ρ = (2.17 ± 0.11) g/cm3 (Δρ/ρ = 5%, SNR = 19.5)
References
M1
(1992):
Williams, G.V., 1992. The mass of (1) Ceres from perturbations on (348) May, in: Asteroids, Comets, Meteors 1991, pp. 641–643
M2
(1992):
Sitarski, G., Todorovic-Juchniewicz, B., 1992. Determination of the mass of (1) Ceres from perturbations on (203) Pompeja and (348) May. Acta Astronomica 42, 139–144.
M5
(1995):
Viateau, B., Rapaport, M., 1995. The orbit of (2) Pallas. Astronomy and Astrophysics 111, 305–+.
M6
(1995):
Sitarski, G., Todorovic-Juchniewicz, B., 1995. Determination of Masses of Ceres and Vesta from Their Perturbations on Four Asteroids. Acta Astronomica 45, 673–677.
M7
(1996):
Carpino, M., Knezevic, Z., 1996. Asteroid mass determination: (1) Ceres, in: S. Ferraz-Mello, B. Morando, & J.-E. Arlot (Ed.), Dynamics, Ephemerides, and Astrometry of the Solar System, pp. 203–+.
M8
(1996):
Kuzmanoski, M., 1996. A method for asteroid mass determination, in: S. Ferraz-Mello, B. Morando, & J.-E. Arlot (Ed.), Dynamics, Ephemerides, and Astrometry of the Solar System, pp. 207–+.
M11
(1997):
Viateau, B., Rapaport, M., 1997. Improvement of the Orbits of Asteroids and the Mass of (1) Ceres, in: R. M. Bonnet, E. Høg, P. L. Bernacca, L. Emiliani, A. Blaauw, C. Turon, J. Kovalevsky, L. Lindegren, H. Hassan, M. Bouffard, B. Strim, D. Heger, M. A. C. Perryman, & L. Woltjer (Ed.), Hipparcos - Venice '97, pp. 91–94.
M15
(1998):
Viateau, B., Rapaport, M., 1998. The mass of (1) Ceres from its gravitational perturbations on the orbits of 9 asteroids. Astronomy and Astrophysics 334, 729–735.
M17
(1999):
Hilton, J.L., 1999. US Naval Observatory Ephemerides of the Largest Asteroids. Astronomical Journal 117, 1077–1086.
M21
(2000):
Michalak, G., 2000. Determination of asteroid masses — I. (1) Ceres, (2) Pallas and (4) Vesta. Astronomy and Astrophysics 360, 363–374.
M23
(2001):
Goffin, E., 2001. New determination of the mass of Pallas. Astronomy and Astrophysics 365, 627–630.
M25
(2001):
Pitjeva, E.V., 2001. Progress in the determination of some astronomical constants from radiometric observations of planets and spacecraft. Astronomy and Astrophysics 371, 760–765.
M29
(2001):
Standish, E.M., 2001. Suggested GM values for Ceres, Pallas, and Vesta. Technical Report. JPL Interoffice Memorandum.
M39
(2004):
Pitjeva, E.V., 2004. Estimations of masses of the largest asteroids and the main asteroid belt from ranging to planets, Mars orbiters and landers, in: J.-P. Paillé (Ed.), 35th COSPAR Scientific Assembly, p. 2014.
M49
(2005):
Pitjeva, E.V., 2005. High-Precision Ephemerides of Planets - EPM and Determination of Some Astronomical Constants. Solar System Research 39, 176–186.
M56
(2006):
Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.N., Sjogren, W.L., 2006. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50.
M63
(2007):
Kovačević, A., Kuzmanoski, M., 2007. A New Determination of the Mass of (1) Ceres. Earth Moon and Planets 100, 117–123.
M70
(2008):
Fienga, A., Manche, H., Laskar, J., Gastineau, M., 2008. INPOP06: a new numerical planetary ephemeris. Astronomy and Astrophysics 477, 315–327.
M72
(2008):
Baer, J., Milani, A., Chesley, S.R., Matson, R.D., 2008. An Observational Error Model, and Application to Asteroid Mass Determination, in: Bulletin of the American Astronomical Society, p. 493.
M86
(2009):
Folkner, W.M., Williams, J.G., Boggs, D.H., 2009. The planetary and lunar ephemeris de 421. IPN Progress Report 42, 1–34.
M93
(2010):
Fienga, A., Manche, H., Kuchynka, P., Laskar, J., Gastineau, M., 2010. INPOP10a. Scientific Notes.
M95
(2011):
Baer, J., Chesley, S.R., Matson, R.D., 2011. Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. Astronomical Journal 141, 143–155.
M103
(2011):
Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T., 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428.
M110
(1971):
Schubart, J., 1971. The Planetary Masses and the Orbits of the First Four Minor Planets. In: The IAU System of Astronomical Constants, Proc. IAU Colloq. 9, Heidelberg, Germany, 12-14 August 1970; B. Emerson, T. Lederle (eds.), Celest. Mech. 4, 246-249
M111
(1971):
Schubart, J., 1971. Asteroid Masses and Densities. In: Physical Studies of Minor Planets, Proc. IAU Colloq. 12, Tucson, AZ, USA, 6-10 March 1971; T. Gehrels (ed.), NASA Sp-267, p. 33-39
M112
(1974):
Schubart, J., 1974. The Masses of the First Two Asteroids. Astronomy and Astrophysics 30, 289-292.
M115
(1988):
Landgraf, W., 1988. The mass of Ceres. Astronomy and Astrophysics (ISSN 0004-6361), vol. 191, no. 1, Feb. 1988, p. 161-166.
M116
(1989):
Standish, E. M., Hellings, R. W., 1989. A determination of the masses of Ceres, Pallas, and Vesta from their perturbations upon the orbit of Mars. Icarus, Volume 80, Issue 2, p. 326-333.
M117
(1991):
Goffin, E., 1991. The orbit of 203 Pompeja and the mass of Ceres. Astronomy and Astrophysics (ISSN 0004-6361), vol. 249, no. 2, Sept. 1991, p. 563-568.
M123
(2014):
Goffin, E., 2014. Astrometric asteroid masses: a simultaneous determination. Astronomy & Astrophysics, Volume 565, id.A56, 8 pp.
M125
(2017):
Baer, J., Chesley, S.R., 2017. Simultaneous Mass Determination for Gravitationally Coupled Asteroids. The Astronomical Journal, Volume 154, Issue 2, article id. 76, 11 pp.
M126
(2019):
Fienga, A., et. al, 2019. INPOP19a planetary ephemeris. Notes Scientifiques et Techniques de l'Institut de mécanique céleste,
M132
(2016):
Park, R., Konopliv, A., Bills, B. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016). https://doi.org/10.1038/nature18955