Average asteroid densities (g/cm^3): C = 1.3 ± 0.6, B = 2.4 ± 0.5, S = 2.7 ± 0.5, M = 3.5 ± 1.0, P = 2.8 ± 1.6,
X = 1.9 ± 0.8, Xc = 4.9 ± 0.9, Xk = 4.2 ± 0.7 (Ref)
Additional resources:
3D Model |
JPL New Horizons |
Minor Planet Center |
Wikipedia (these auto-generated links might not work) Note:
The density estimates have been ranked from (A) to (E), corresponding to the relative error: (B) less than 20%,
(C) between 20 and 50%, (D) between 50 and 100%, and (E) more than 100%. (A) stands for (presumably) reliable estimates (accuracy better than 20%), based on more than 5 mass estimates and 5 diameter
estimates, or a spacecraft encounter. Apparently unrealistic densities (ρ > 8) are tagged with (X).
EVM: average by using the Expected Value Method (Ref). w.avg: weighted average (with w = 1/err^2).
T.T: Tholen Tax Class. T.B: Bus & Binzel Tax Class. T T.L: S3OS2 Lazarro (Tholen) Tax Class. T.L B: S3OS2 Lazarro (Bus & Binzel) Tax Class. T.D: DeMeo Tax Class. Ref: S = SiMDA, C = Carry (2012)
Diameter estimates
Notes (N): 1: This estimate is discarded for the average diameter (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average diameter (and derived density) calculation in SiMDA (catalog).
NEATM : Near-Earth Asteroid Thermal Model. STM : Standard Thermal Model. TPM : Thermophysical Model.
EVM diam. average D = (259.8 ± 25.82) km (ΔD/D = 10%, SNR = 10.06)
Derived bulk density ρ = (1.69 ± 0.60) g/cm3 (Δρ/ρ = 36%, SNR = 2.8)
References
D12
(2004):
Müller, T.G., Blommaert, J.A.D.L., 2004. 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis. Astronomy and Astrophysics 418, 347–356.
D64
(2010):
Ryan, E.L., Woodward, C.E., 2010. Rectified Asteroid Albedos and Diameters from IRAS and MSX Photometry Catalogs. Astronomical Journal 140, 933–943.
D83
(2011):
Usui, F., Kuroda, D., Müller, T.G., Hasegawa, S., Ishiguro, M., Ootsubo, T., Ishihara, D., Kataza, H., Takita, S., Oyabu, S., Ueno, M., Matsuhara, H., Onaka, T., 2011. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publications of the Astronomical Society of Japan 63, 1117–1138.
D93
(2004):
Tedesco, E.F., Noah, P.V., Noah, M.C., Price, S.D., 2004. IRAS Minor Planet Survey. NASA Planetary Data System. IRAS-A-FPA-3-RDR-IMPS-V6.0.
Mass estimates
Notes (N): 1: This estimate is discarded for the average mass (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average mass (and derived density) calculation in SiMDA (catalog).
3: This estimate is an average of individual solutions listed before under the same reference (e.g. M125).
Deflec : Orbital deflection (close encounter) of one or several test asteroids (classical LSQ). Ephem : Planetary ephemeris solution. OrbFitN : Simultaneous multi-asteroid astrometric orbit solution (similar to 'Ephem').
EVM mass average M = (1.548 ± 0.301) × 1019 kg (ΔM/M = 19%, SNR = 5.1)
Derived bulk density ρ = (1.69 ± 0.60) g/cm3 (Δρ/ρ = 36%, SNR = 2.8)
References
M31
(2002):
Chernetenko, Y.A., Kochetova, O.M., 2002. Masses of some large minor planets, in: B. Warmbein (Ed.), Asteroids, Comets, and Meteors: ACM 2002, pp. 437–440.
M42
(2004):
Kochetova, O.M., 2004. Determination of Large Asteroid Masses by the Dynamical Method. Solar System Research 38, 66–75.
M72
(2008):
Baer, J., Milani, A., Chesley, S.R., Matson, R.D., 2008. An Observational Error Model, and Application to Asteroid Mass Determination, in: Bulletin of the American Astronomical Society, p. 493.
M86
(2009):
Folkner, W.M., Williams, J.G., Boggs, D.H., 2009. The planetary and lunar ephemeris de 421. IPN Progress Report 42, 1–34.
M93
(2010):
Fienga, A., Manche, H., Kuchynka, P., Laskar, J., Gastineau, M., 2010. INPOP10a. Scientific Notes.
M95
(2011):
Baer, J., Chesley, S.R., Matson, R.D., 2011. Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. Astronomical Journal 141, 143–155.
M97
(2011):
Zielenbach, W., 2011. Mass Determination Studies of 104 Large Asteroids. Astronomical Journal 142, 120–128.
M100
(2011):
Fienga, A., Kuchynka, P., Laskar, J., Manche, H., Gastineau, M., 2011. Asteroid mass determinations with INPOP planetary ephemerides. EPSC-DPS Joint Meeting 2011 , 1879.
M123
(2014):
Goffin, E., 2014. Astrometric asteroid masses: a simultaneous determination. Astronomy & Astrophysics, Volume 565, id.A56, 8 pp.
M125
(2017):
Baer, J., Chesley, S.R., 2017. Simultaneous Mass Determination for Gravitationally Coupled Asteroids. The Astronomical Journal, Volume 154, Issue 2, article id. 76, 11 pp.
M126
(2019):
Fienga, A., et. al, 2019. INPOP19a planetary ephemeris. Notes Scientifiques et Techniques de l'Institut de mécanique céleste,