Summary for : (3) Juno

DynT.TT.BT T.L B T.DDensity (g/cm^3)Δρ/ρDiameter (km)ΔD/DMass (kg)ΔM/MRefAvg.M
MBASSkS | SkSq3.62 ± 0.73   (C)20 %244.4 ± 9.84.0 %2.77e+19 ± 4.48e+1816 %SEVM
MBASSkS | SkSq3.89 ± 0.66   (A)17 %237.0 ± 8.23.4 %2.71e+19 ± 3.61e+1813 %Sw.avg
MBASq3.68 ± 0.62   (A)17 %241.8 ± 10.64.4 %2.73e+19 ± 2.90e+1811 %C?

Average asteroid densities (g/cm^3):
C = 1.3 ± 0.6, B = 2.4 ± 0.5, S = 2.7 ± 0.5, M = 3.5 ± 1.0, P = 2.8 ± 1.6, X = 1.9 ± 0.8, Xc = 4.9 ± 0.9, Xk = 4.2 ± 0.7 (Ref)

Object is a Gaia target for mass determination !

Additional resources:
3D Model | JPL New Horizons | Minor Planet Center | Wikipedia (these auto-generated links might not work)

Note: The density estimates have been ranked from (A) to (E), corresponding to the relative error: (B) less than 20%, (C) between 20 and 50%, (D) between 50 and 100%, and (E) more than 100%. (A) stands for (presumably) reliable estimates (accuracy better than 20%), based on more than 5 mass estimates and 5 diameter estimates, or a spacecraft encounter. Apparently unrealistic densities (ρ > 8) are tagged with (X).

EVM: average by using the Expected Value Method (Ref). w.avg: weighted average (with w = 1/err^2).

T.T: Tholen Tax Class. T.B: Bus & Binzel Tax Class. T T.L: S3OS2 Lazarro (Tholen) Tax Class. T.L B: S3OS2 Lazarro (Bus & Binzel) Tax Class. T.D: DeMeo Tax Class.

Ref: S = SiMDA, C = Carry (2012)


Diameter estimates

DesignationDiameter / Err (km)ΔD/DMethodYearRefNχ2Use
(3) Juno233.91 ± 11.194.8 % STM2004D932 0.87 1
(3) Juno250.30 ± 5.302.1 % Img-TE2008D48 1.25 2
(3) Juno248.48 ± 6.842.8 % STM2010D64 0.36 3
(3) Juno262.01 ± 12.054.6 % NEATM2010D64 2.14 4
(3) Juno252.00 ± 29.0011.5 % MDM:LO2011D78 0.07 5
(3) Juno231.08 ± 2.591.1 % STM2011D832 26.36 6

plot, average diameter and derived density

All

Notes (N):
1: This estimate is discarded for the average diameter (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average diameter (and derived density) calculation in SiMDA (catalog).

Img-TE : Triaxial ellipsoid model from images. MDM:LO : Multi-Data Modeling: Lightcurves + Occultations. NEATM : Near-Earth Asteroid Thermal Model. STM : Standard Thermal Model.



EVM diam. average D = (244.4 ± 9.83) km   (ΔD/D = 4%, SNR = 24.87) Derived bulk density ρ = (3.62 ± 0.73) g/cm3   (Δρ/ρ = 20%, SNR = 5.0)



References
D48(2008):Drummond, J.D., Christou, J.C., 2008. Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres. Icarus 197, 480–496.
D64(2010):Ryan, E.L., Woodward, C.E., 2010. Rectified Asteroid Albedos and Diameters from IRAS and MSX Photometry Catalogs. Astronomical Journal 140, 933–943.
D78(2011):Ďurech, J., Kaasalainen, M., Herald, D., Dunham, D., Timerson, B., Hanuš, J., Frappa, E., Talbot, J., Hayamizu, T., Warner, B.D., Pilcher, F., Galád, A., 2011. Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes. Icarus 214, 652–670.
D83(2011):Usui, F., Kuroda, D., Müller, T.G., Hasegawa, S., Ishiguro, M., Ootsubo, T., Ishihara, D., Kataza, H., Takita, S., Oyabu, S., Ueno, M., Matsuhara, H., Onaka, T., 2011. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publications of the Astronomical Society of Japan 63, 1117–1138.
D93(2004):Tedesco, E.F., Noah, P.V., Noah, M.C., Price, S.D., 2004. IRAS Minor Planet Survey. NASA Planetary Data System. IRAS-A-FPA-3-RDR-IMPS-V6.0.


Mass estimates

DesignationMass / Err (kg)ΔM/MMethodYearRefNχ2Use
(3) Juno4.16e+19 ± 6.96e+1817 %Deflec 2002M31124.00 1
(3) Juno4.16e+19 ± 6.96e+1817 %Deflec 2004M42124.00 2
(3) Juno2.82e+19 ± 1.19e+184 %Deflec 2004M390.19 3
(3) Juno3.00e+19 ± 5.97e+172 %Deflec 2005M49215.09 4
(3) Juno2.96e+19 ± 2.98e+1810 %Deflec 2006M560.41 5
(3) Juno2.67e+19 ± 4.57e+1817 %Deflec 2008M720.05 6
(3) Juno2.30e+19 ± 2.30e+1810 %Ephem 2009M864.14 7
(3) Juno2.31e+19 ± 2.61e+1811 %Ephem 2010M933.08 8
(3) Juno1.38e+19 ± 7.92e+1857 %Deflec 2010M92123.07 9
(3) Juno2.86e+19 ± 4.57e+1816 %Deflec 2011M950.04 10
(3) Juno2.41e+19 ± 1.81e+188 %Ephem 2011M1033.91 11
(3) Juno2.68e+19 ± 3.98e+1815 %Deflec 2011M970.05 12
(3) Juno3.04e+19 ± 3.30e+1811 %Deflec 2011M970.68 13
(3) Juno3.10e+19 ± 3.24e+1810 %Deflec 2011M971.05 14
(3) Juno1.70e+19 ± 5.17e+1830 %Deflec 2011M97124.27 15
(3) Juno2.35e+19 ± 1.19e+185 %Ephem 2011M10012.35 16
(3) Juno2.50e+19 ± 7.95e+173 %OrbFitN 2014M12310.95 17
(3) Juno3.60e+19 ± 2.57e+187 %Deflec 2017M125210.45 18
(3) Juno4.95e+19 ± 8.89e+1818 %Deflec 2017M12526.03 19
(3) Juno2.92e+19 ± 6.12e+1821 %Deflec 2017M12520.06 20
(3) Juno3.08e+19 ± 7.02e+1823 %Deflec 2017M12520.20 21
(3) Juno4.79e+19 ± 1.54e+1932 %Deflec 2017M12521.73 22
(3) Juno2.50e+19 ± 8.13e+1832 %Deflec 2017M12520.10 23
(3) Juno3.30e+19 ± 1.12e+1934 %Deflec 2017M12520.23 24
(3) Juno9.23e+18 ± 3.36e+1836 %Deflec 2017M125230.17 25
(3) Juno3.02e+19 ± 1.30e+1943 %Deflec 2017M12520.04 26
(3) Juno2.80e+19 ± 1.73e+186 %Deflec 2017M12530.04 27
(3) Juno2.56e+19 ± 8.52e+173 %Ephem 2019M1266.08 28

plot, average mass and derived density

All

Notes (N):
1: This estimate is discarded for the average mass (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average mass (and derived density) calculation in SiMDA (catalog).
3: This estimate is an average of individual solutions listed before under the same reference (e.g. M125).

Deflec : Orbital deflection (close encounter) of one or several test asteroids (classical LSQ). Ephem : Planetary ephemeris solution. OrbFitN : Simultaneous multi-asteroid astrometric orbit solution (similar to 'Ephem').



EVM mass average M = (2.768 ± 0.448) × 1019 kg   (ΔM/M = 16%, SNR = 6.2) Derived bulk density ρ = (3.62 ± 0.73) g/cm3   (Δρ/ρ = 20%, SNR = 5.0)



References
M31(2002):Chernetenko, Y.A., Kochetova, O.M., 2002. Masses of some large minor planets, in: B. Warmbein (Ed.), Asteroids, Comets, and Meteors: ACM 2002, pp. 437–440.
M39(2004):Pitjeva, E.V., 2004. Estimations of masses of the largest asteroids and the main asteroid belt from ranging to planets, Mars orbiters and landers, in: J.-P. Paillé (Ed.), 35th COSPAR Scientific Assembly, p. 2014.
M42(2004):Kochetova, O.M., 2004. Determination of Large Asteroid Masses by the Dynamical Method. Solar System Research 38, 66–75.
M49(2005):Pitjeva, E.V., 2005. High-Precision Ephemerides of Planets - EPM and Determination of Some Astronomical Constants. Solar System Research 39, 176–186.
M56(2006):Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.N., Sjogren, W.L., 2006. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50.
M72(2008):Baer, J., Milani, A., Chesley, S.R., Matson, R.D., 2008. An Observational Error Model, and Application to Asteroid Mass Determination, in: Bulletin of the American Astronomical Society, p. 493.
M86(2009):Folkner, W.M., Williams, J.G., Boggs, D.H., 2009. The planetary and lunar ephemeris de 421. IPN Progress Report 42, 1–34.
M92(2010):Somenzi, L., Fienga, A., Laskar, J., Kuchynka, P., 2010. Determination of asteroid masses from their close encounters with Mars. Planetary and Space Science 58, 858–863.
M93(2010):Fienga, A., Manche, H., Kuchynka, P., Laskar, J., Gastineau, M., 2010. INPOP10a. Scientific Notes.
M95(2011):Baer, J., Chesley, S.R., Matson, R.D., 2011. Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. Astronomical Journal 141, 143–155.
M97(2011):Zielenbach, W., 2011. Mass Determination Studies of 104 Large Asteroids. Astronomical Journal 142, 120–128.
M100(2011):Fienga, A., Kuchynka, P., Laskar, J., Manche, H., Gastineau, M., 2011. Asteroid mass determinations with INPOP planetary ephemerides. EPSC-DPS Joint Meeting 2011 , 1879.
M103(2011):Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T., 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428.
M123(2014):Goffin, E., 2014. Astrometric asteroid masses: a simultaneous determination. Astronomy & Astrophysics, Volume 565, id.A56, 8 pp.
M125(2017):Baer, J., Chesley, S.R., 2017. Simultaneous Mass Determination for Gravitationally Coupled Asteroids. The Astronomical Journal, Volume 154, Issue 2, article id. 76, 11 pp.
M126(2019):Fienga, A., et. al, 2019. INPOP19a planetary ephemeris. Notes Scientifiques et Techniques de l'Institut de mécanique céleste,