Summary for : (4) Vesta

DynT.TT.BT T.L B T.DDensity (g/cm^3)Δρ/ρDiameter (km)ΔD/DMass (kg)ΔM/MRefAvg.M
MBAVV- | -V3.45 ± 0.12   (A)3 %523.5 ± 5.81.1 %2.59e+20 ± 2.72e+181 %SEVM
MBAVV- | -V3.41 ± 0.47   (A)14 %525.4 ± 20.73.9 %2.59e+20 ± 1.82e+197 %Sw.avg
MBAV3.58 ± 0.15   (A)4 %519.3 ± 6.81.3 %2.63e+20 ± 5.00e+182 %C?

Average asteroid densities (g/cm^3):
C = 1.3 ± 0.6, B = 2.4 ± 0.5, S = 2.7 ± 0.5, M = 3.5 ± 1.0, P = 2.8 ± 1.6, X = 1.9 ± 0.8, Xc = 4.9 ± 0.9, Xk = 4.2 ± 0.7 (Ref)

Object is a Gaia target for mass determination !

Additional resources:
3D Model | JPL New Horizons | Minor Planet Center | Wikipedia (these auto-generated links might not work)

Note: The density estimates have been ranked from (A) to (E), corresponding to the relative error: (B) less than 20%, (C) between 20 and 50%, (D) between 50 and 100%, and (E) more than 100%. (A) stands for (presumably) reliable estimates (accuracy better than 20%), based on more than 5 mass estimates and 5 diameter estimates, or a spacecraft encounter. Apparently unrealistic densities (ρ > 8) are tagged with (X).

EVM: average by using the Expected Value Method (Ref). w.avg: weighted average (with w = 1/err^2).

T.T: Tholen Tax Class. T.B: Bus & Binzel Tax Class. T T.L: S3OS2 Lazarro (Tholen) Tax Class. T.L B: S3OS2 Lazarro (Bus & Binzel) Tax Class. T.D: DeMeo Tax Class.

Ref: S = SiMDA, C = Carry (2012)


Diameter estimates

DesignationDiameter / Err (km)ΔD/DMethodYearRefNχ2Use
(4) Vesta530.00 ± 10.001.9 % Img-TE1997D22 0.42 1
(4) Vesta468.29 ± 26.705.7 % STM2004D9312 4.27 2
(4) Vesta510.29 ± 5.801.1 % Img-TE2008D482 5.18 3
(4) Vesta520.37 ± 6.841.3 % STM2010D642 0.21 4
(4) Vesta515.86 ± 19.253.7 % NEATM2010D642 0.16 5
(4) Vesta521.73 ± 7.501.4 % STM2011D832 0.06 6
(4) Vesta525.40 ± 0.200.0 % FlyBy2012D108 90.77 7

plot, average diameter and derived density

All

Notes (N):
1: This estimate is discarded for the average diameter (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average diameter (and derived density) calculation in SiMDA (catalog).

FlyBy : Images from spacecraft encounter. Img-TE : Triaxial ellipsoid model from images. NEATM : Near-Earth Asteroid Thermal Model. STM : Standard Thermal Model.



EVM diam. average D = (523.5 ± 5.75) km   (ΔD/D = 1%, SNR = 91.02) Derived bulk density ρ = (3.45 ± 0.12) g/cm3   (Δρ/ρ = 3%, SNR = 28.9)



References
D2(1997):Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., Wells, E.N., 1997. Vesta: Spin Pole, Size, and Shape from HST Images. Icarus 128, 88–94.
D48(2008):Drummond, J.D., Christou, J.C., 2008. Triaxial ellipsoid dimensions and rotational poles of seven asteroids from Lick Observatory adaptive optics images, and of Ceres. Icarus 197, 480–496.
D64(2010):Ryan, E.L., Woodward, C.E., 2010. Rectified Asteroid Albedos and Diameters from IRAS and MSX Photometry Catalogs. Astronomical Journal 140, 933–943.
D83(2011):Usui, F., Kuroda, D., Müller, T.G., Hasegawa, S., Ishiguro, M., Ootsubo, T., Ishihara, D., Kataza, H., Takita, S., Oyabu, S., Ueno, M., Matsuhara, H., Onaka, T., 2011. Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey. Publications of the Astronomical Society of Japan 63, 1117–1138.
D93(2004):Tedesco, E.F., Noah, P.V., Noah, M.C., Price, S.D., 2004. IRAS Minor Planet Survey. NASA Planetary Data System. IRAS-A-FPA-3-RDR-IMPS-V6.0.
D108(2012):Russell, C.T., Raymond, C.A., Coradini, A., et al., 2012. Dawn at Vesta: Testing the Protoplanetary Paradigm. Science 11 May 2012, Vol. 336, Issue 6082, pp. 684-686. DOI: 10.1126/science.1219381 [NOTE: the authors give a density of 3.456 ± 0.035 g/cm^3, derived from a corrected volume of 74.970 × 10^6 km^3 by adding HST observations to the Dawn data (unmapped northern polar region)]


Mass estimates

DesignationMass / Err (kg)ΔM/MMethodYearRefNχ2Use
(4) Vesta2.39e+20 ± 1.60e+197 %Deflec 1968M10921.64 1
(4) Vesta2.98e+20 ± 6.00e+1920 %FlyBy 1989M11620.41 2
(4) Vesta2.78e+20 ± 8.55e+183 %Deflec 1995M624.69 3
(4) Vesta3.36e+20 ± 9.94e+183 %Deflec 1999M171259.26 4
(4) Vesta2.70e+20 ± 9.94e+184 %Deflec 2000M2121.12 5
(4) Vesta2.60e+20 ± 3.18e+181 %Deflec 2001M2420.03 6
(4) Vesta2.67e+20 ± 2.98e+181 %Deflec 2001M2926.37 7
(4) Vesta2.70e+20 ± 1.99e+181 %Deflec 2001M25227.95 8
(4) Vesta2.74e+20 ± 5.97e+182 %Deflec 2002M3325.92 9
(4) Vesta2.70e+20 ± 3.98e+181 %Deflec 2004M3926.99 10
(4) Vesta2.67e+20 ± 1.99e+170 %Deflec 2005M4921427.97 11
(4) Vesta2.57e+20 ± 1.59e+196 %Deflec 2005M4320.02 12
(4) Vesta2.61e+20 ± 3.98e+182 %Deflec 2005M4320.15 13
(4) Vesta2.23e+20 ± 9.94e+184 %Deflec 2005M431213.47 14
(4) Vesta2.23e+20 ± 3.38e+1915 %Deflec 2005M43121.16 15
(4) Vesta2.70e+20 ± 3.18e+181 %Deflec 2006M56210.94 16
(4) Vesta2.62e+20 ± 5.97e+170 %Deflec 2008M72217.82 17
(4) Vesta2.68e+20 ± 5.97e+170 %Ephem 2008M702203.67 18
(4) Vesta2.64e+20 ± 2.64e+1910 %Ephem 2009M8620.03 19
(4) Vesta2.65e+20 ± 3.35e+181 %Ephem 2010M9322.72 20
(4) Vesta2.58e+20 ± 1.99e+170 %Deflec 2010M89255.32 21
(4) Vesta2.59e+20 ± 1.05e+180 %Deflec 2011M9520.21 22
(4) Vesta2.61e+20 ± 4.10e+182 %Ephem 2011M10320.14 23
(4) Vesta2.65e+20 ± 3.00e+181 %Ephem 2011M10323.39 24
(4) Vesta2.61e+20 ± 4.10e+182 %Deflec 2011M9720.14 25
(4) Vesta2.59e+20 ± 1.41e+181 %Deflec 2011M9720.12 26
(4) Vesta2.59e+20 ± 1.41e+181 %Deflec 2011M9720.12 27
(4) Vesta2.65e+20 ± 2.16e+181 %Deflec 2011M9726.53 28
(4) Vesta2.59e+20 ± 1.19e+180 %Ephem 2011M10020.16 29
(4) Vesta2.59e+20 ± 1.00e+150 %FlyBy 2012M133163297.86 30
(4) Vesta2.58e+20 ± 3.98e+170 %OrbFitN 2014M12326.06 31
(4) Vesta2.64e+20 ± 5.09e+170 %Deflec 2017M125297.26 32
(4) Vesta2.60e+20 ± 2.76e+181 %Deflec 2017M12520.14 33
(4) Vesta2.58e+20 ± 2.80e+181 %Deflec 2017M12520.12 34
(4) Vesta2.58e+20 ± 3.02e+181 %Deflec 2017M12520.11 35
(4) Vesta2.58e+20 ± 3.18e+181 %Deflec 2017M12520.09 36
(4) Vesta2.60e+20 ± 4.02e+182 %Deflec 2017M12520.06 37
(4) Vesta2.52e+20 ± 5.07e+182 %Deflec 2017M12521.90 38
(4) Vesta2.52e+20 ± 7.68e+183 %Deflec 2017M12520.83 39
(4) Vesta2.50e+20 ± 9.47e+184 %Deflec 2017M12520.90 40
(4) Vesta2.76e+20 ± 1.06e+194 %Deflec 2017M12522.55 41
(4) Vesta2.47e+20 ± 9.82e+184 %Deflec 2017M12521.72 42
(4) Vesta2.72e+20 ± 1.13e+194 %Deflec 2017M12521.31 43
(4) Vesta2.62e+20 ± 1.15e+194 %Deflec 2017M12520.07 44
(4) Vesta2.72e+20 ± 1.24e+195 %Deflec 2017M12521.09 45
(4) Vesta2.45e+20 ± 1.14e+195 %Deflec 2017M12521.70 46
(4) Vesta2.21e+20 ± 1.02e+195 %Deflec 2017M125214.45 47
(4) Vesta2.27e+20 ± 1.09e+195 %Deflec 2017M12529.04 48
(4) Vesta2.94e+20 ± 1.53e+195 %Deflec 2017M12525.18 49
(4) Vesta2.78e+20 ± 1.49e+195 %Deflec 2017M12521.61 50
(4) Vesta2.63e+20 ± 4.69e+170 %Deflec 2017M125353.17 51
(4) Vesta2.59e+20 ± 6.31e+170 %Ephem 2019M12620.58 52

plot, average mass and derived density

All

Notes (N):
1: This estimate is discarded for the average mass (and derived density) calculation in Carry (2012).
2: This estimate is discarded for the average mass (and derived density) calculation in SiMDA (catalog).
3: This estimate is an average of individual solutions listed before under the same reference (e.g. M125).

Deflec : Orbital deflection (close encounter) of one or several test asteroids (classical LSQ). Ephem : Planetary ephemeris solution. FlyBy : Spacecraft radio experiment (ranging etc. from flyby, orbiter or lander). OrbFitN : Simultaneous multi-asteroid astrometric orbit solution (similar to 'Ephem').



EVM mass average M = (2.595 ± 0.027) × 1020 kg   (ΔM/M = 1%, SNR = 95.4) Derived bulk density ρ = (3.45 ± 0.12) g/cm3   (Δρ/ρ = 3%, SNR = 28.9)



References
M6(1995):Sitarski, G., Todorovic-Juchniewicz, B., 1995. Determination of Masses of Ceres and Vesta from Their Perturbations on Four Asteroids. Acta Astronomica 45, 673–677.
M17(1999):Hilton, J.L., 1999. US Naval Observatory Ephemerides of the Largest Asteroids. Astronomical Journal 117, 1077–1086.
M21(2000):Michalak, G., 2000. Determination of asteroid masses — I. (1) Ceres, (2) Pallas and (4) Vesta. Astronomy and Astrophysics 360, 363–374.
M24(2001):Viateau, B., Rapaport, M., 2001. Mass and density of asteroids (4) Vesta and (11) Parthenope. Astronomy and Astrophysics 370, 602–609.
M25(2001):Pitjeva, E.V., 2001. Progress in the determination of some astronomical constants from radiometric observations of planets and spacecraft. Astronomy and Astrophysics 371, 760–765.
M29(2001):Standish, E.M., 2001. Suggested GM values for Ceres, Pallas, and Vesta. Technical Report. JPL Interoffice Memorandum.
M33(2002):Konopliv, A.S., Miller, J.K., Owen, W.M., Yeomans, D.K., Giorgini, J.D., Garmier, R., Barriot, J.P., 2002. A Global Solution for the Gravity Field, Rotation, Landmarks, and Ephemeris of Eros. Icarus 160, 289–299.
M39(2004):Pitjeva, E.V., 2004. Estimations of masses of the largest asteroids and the main asteroid belt from ranging to planets, Mars orbiters and landers, in: J.-P. Paillé (Ed.), 35th COSPAR Scientific Assembly, p. 2014.
M43(2005):Kovačević, A., 2005. Determination of the mass of (4) Vesta based on new close approaches. Astronomy and Astrophysics 430, 319–325.
M49(2005):Pitjeva, E.V., 2005. High-Precision Ephemerides of Planets - EPM and Determination of Some Astronomical Constants. Solar System Research 39, 176–186.
M56(2006):Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.N., Sjogren, W.L., 2006. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50.
M70(2008):Fienga, A., Manche, H., Laskar, J., Gastineau, M., 2008. INPOP06: a new numerical planetary ephemeris. Astronomy and Astrophysics 477, 315–327.
M72(2008):Baer, J., Milani, A., Chesley, S.R., Matson, R.D., 2008. An Observational Error Model, and Application to Asteroid Mass Determination, in: Bulletin of the American Astronomical Society, p. 493.
M86(2009):Folkner, W.M., Williams, J.G., Boggs, D.H., 2009. The planetary and lunar ephemeris de 421. IPN Progress Report 42, 1–34.
M89(2010):Kuzmanoski, M., Apostolovska, G., Novaković, B., 2010. The Mass of (4) Vesta Derived from its Largest Gravitational Effects. Astronomical Journal 140, 880–886.
M93(2010):Fienga, A., Manche, H., Kuchynka, P., Laskar, J., Gastineau, M., 2010. INPOP10a. Scientific Notes.
M95(2011):Baer, J., Chesley, S.R., Matson, R.D., 2011. Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. Astronomical Journal 141, 143–155.
M97(2011):Zielenbach, W., 2011. Mass Determination Studies of 104 Large Asteroids. Astronomical Journal 142, 120–128.
M100(2011):Fienga, A., Kuchynka, P., Laskar, J., Manche, H., Gastineau, M., 2011. Asteroid mass determinations with INPOP planetary ephemerides. EPSC-DPS Joint Meeting 2011 , 1879.
M103(2011):Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T., 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428.
M109(1968):Hertz, H. G., 1966. Mass of Vesta. Science, Volume 160, Issue 3825, pp. 299-300
M116(1989):Standish, E. M., Hellings, R. W., 1989. A determination of the masses of Ceres, Pallas, and Vesta from their perturbations upon the orbit of Mars. Icarus, Volume 80, Issue 2, p. 326-333.
M123(2014):Goffin, E., 2014. Astrometric asteroid masses: a simultaneous determination. Astronomy & Astrophysics, Volume 565, id.A56, 8 pp.
M125(2017):Baer, J., Chesley, S.R., 2017. Simultaneous Mass Determination for Gravitationally Coupled Asteroids. The Astronomical Journal, Volume 154, Issue 2, article id. 76, 11 pp.
M126(2019):Fienga, A., et. al, 2019. INPOP19a planetary ephemeris. Notes Scientifiques et Techniques de l'Institut de mécanique céleste,
M133(2012):Russell, C.T., Raymond, C.A., Coradini, A., et al., 2012. Dawn at Vesta: Testing the Protoplanetary Paradigm. Science 11 May 2012, Vol. 336, Issue 6082, pp. 684-686. DOI: 10.1126/science.1219381 [NOTE: the authors give a density of 3.456 ± 0.035 g/cm^3, derived from a corrected volume of 74.970 × 10^6 km^3 by adding HST observations to the Dawn data (unmapped northern polar region)]