[1] Fernandez, J. A., Evolution of comet orbits under the perturbing influence of the giant planets and nearby stars. Icarus, vol. 42, 406–421 (1980), doi:10.1016/0019-1035(80)90104-9.
[2] Fernandez, J. A., On the existence of a comet belt beyond Neptune. Monthly Notices of the Royal Astronomical Society, vol. 192, 481–491 (1980), doi: 10.1093/mnras/192.3.481.
[3] Duncan, M., Quinn, T., Tremaine, S., The Origin of Short-Period Comets. The Astrophysical Journal, vol. 328 (1988), L69, doi: 10.1086/185162.
[4] Jewitt, D., Luu, J., Discovery of the candidate Kuiper belt object 1992 QB 1. Nature, vol. 362, no. 6422, 730–732 (1993), doi: 10.1038/362730a0.
[5] Ortiz, J. L. et al., The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, vol. 550, no. 7675, 219–223 (2017), doi: 10.1038/nature24051.
[6] Braga-Ribas, F. et al., A ring system detected around the Centaur (10199) Chariklo. Nature, vol. 508, no. 7494, 72 (2014), doi: 10.1038/nature13155.
[7] Lawler, S. M. et al., OSSOS: X. How to use a Survey Simulator: Statistical Testing of Dynamical Models Against the Real Kuiper Belt. 2018, arXiv:1802.00460 [astro-ph].
[8] DeMeo, F. E., Carry, B., Solar System evolution from compositional mapping of the asteroid belt. Nature, Volume 505, Issue 7485, pp. 629-634 (2014)., vol. 505, 629–634, doi: 10.1038/nature12908.
[9] Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H. F., Origin of the orbital architecture of the giant planets of the Solar System. Nature, Volume 435, Issue 7041, pp. 459-461 (2005)., vol. 435, 459–461, doi: 10.1038/nature03539.
[10] Jewitt, D., THE ACTIVE CENTAURS. The Astronomical Journal, vol. 137, no. 5, 4296–4312 (2009), doi: 10.1088/0004-6256/137/5/4296.
[11] Fernández, J. A. , Helal, M., Gallardo, T., Dynamical evolution and end states of active and inactive Centaurs. Planetary and Space Science, vol. 158, 6 (2018), doi: 10.1016/j.pss.2018.05.013.
[12] Horner, J., Evans, N. W., Bailey, M. E., Simulations of the population of Centaurs - I. The bulk statistics. Monthly Notices of the Royal Astronomical Society, vol. 354, no. 3, 798, (2004, doi: 10.1111/j.1365-2966.2004.08240.x.
[13] Sarid, G., Volk, K., Steckloff, J. K., Harris, W., Womack, M., Woodney, L. M., 29P/Schwassmann-Wachmann 1, A Centaur in the Gateway to the Jupiter-family Comets. The Astrophysical Journal Letters, vol. 883, no. 1, L25, (2019), doi: 10.3847/2041-8213/ab3fb3.
[14] Kretlow, M., Beyond Jupiter: (10199) Chariklo. Journal for Occultation Astronomy, vol. 7, no. 1, 7 (2017).
[15] Klös, O., Beyond Jupiter - (944) Hidalgo. Journal for Occultation Astronomy, vol. 9, no. 1, 20 (2019).
[16] Sheppard, S. S., Trujillo, C., NEW EXTREME TRANS-NEPTUNIAN OBJECTS: TOWARD A SUPER-EARTH IN THE OUTER SOLAR SYSTEM. AJ, vol. 152, no. 6, 221 (2016), doi: 10.3847/1538-3881/152/6/221.
[17] Batygin, K., Brown, M. E., EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM. AJ, vol. 151, no. 2, 22 (2016), doi: 10.3847/0004-6256/151/2/22.
[18] Batygin, K., Adams, F. C. , Brown, M. E. , Becker, J. C., The Planet Nine Hypothesis. Physics Reports, vol. 805, 1–53 (2019), doi: 0.1016/j.physrep.2019.01.009.
[19] Napier, K. J. et al., No Evidence for Orbital Clustering in the Extreme Trans-Neptunian Objects. 2021, arXiv:2102.05601 [astro-ph].
[20] Bannister, M. T. et al., The Outer Solar System Origins Survey. I. Design and First-quarter Discoveries. The Astronomical Journal, vol. 152, 70 (2016), doi: 10.3847/0004-6256/152/3/70.
[21] Holman, M. J. , Payne, M. J. , Pál, A. , A TESS Search for Distant Solar System Planets: A Feasibility Study. 2019, arXiv:1910.06383 [astro-ph].
[22] Rice, M., Laughlin, G., Exploring Trans-Neptunian Space with TESS: A Targeted Shift-stacking Search for Planet Nine and Distant TNOs in the Galactic Plane. Planet. Sci. J, vol. 1, no. 3, 81 (2020), doi: 10.3847/PSJ/abc42c.
[23] V. C. R. O. L. S. S. S. Collaboration et al., The Scientific Impact of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) for Solar System Science. 2020, arXiv:2009.07653 [astro-ph].
[24] Parker, A. et al., Physical Characterization of TNOs with the James Webb Space Telescope. Publications of the Astronomical Society of the Pacific, vol. 128, 018010 (2016), doi: 10.1088/1538-3873/128/959/018010.
[25] Pinilla-Alonso, N., Stansberry, J., Holler, B., Surface properties of large TNOs: Expanding the study to longer wavelengths with the James Webb Space Telescope. 2019, arXiv:1905.12320 [astro-ph].
[26] Runyon, K., Holler, B., Bannister, M., Exploring Trans-Neptunian Objects with Interstellar Probe. 2020, Copernicus Meetings, EPSC2020-276.
This article is reproduced with permission from the "Journal for Occultation Astronomy, JOA, © IOTA/ES”. The original article can be accessed here.
|